Answer:
The equation of the line is 2 x +3 y = 15.
Step-by-step explanation:
Here the given points are ( -3, 7) & ( 3, 3) -
Equation of a line whose points are given such that
[tex]x_{1}, y_{1}[/tex] ) & ( [tex]x_{2}, y_{2}[/tex] )-
y - [tex]y_{1}[/tex] = [tex]\frac{ y_{2} - y_{1} }{ x_{2} - x_{1} }[/tex] ( x - [tex]x_{1}[/tex] )
i.e. y - 7= [tex]\frac{3 - 7}{3 - (-3)}[/tex] ( x- (-3))
y - 7 = [tex]\frac{-4}{3 + 3}[/tex] ( x + 3 )
y - 7= [tex]- \frac{2}{3}[/tex] ( x + 3 )
3 ( y - 7) = - 2 ( x + 3)
3 y -21 = -2 x - 6
2 x + 3 y = 21 - 6
2 x + 3 y = 15
Hence the equation of the required line whose passes trough the points ( - 3, 7) & ( 3, 3) is 2 x + 3 y = 15.