Respuesta :

Answer:

The equation of the line is 2 x +3 y = 15.

Step-by-step explanation:

Here the given points are ( -3, 7) & ( 3, 3) -

Equation of a line whose points are given such that

[tex]x_{1}, y_{1}[/tex] ) & ( [tex]x_{2}, y_{2}[/tex] )-

 y - [tex]y_{1}[/tex]   =  [tex]\frac{ y_{2} - y_{1} }{ x_{2} - x_{1} }[/tex]   ( x - [tex]x_{1}[/tex]  )

i.e.  y - 7= [tex]\frac{3 - 7}{3 - (-3)}[/tex]  ( x- (-3))

      y - 7 =  [tex]\frac{-4}{3 + 3}[/tex] ( x + 3 )

      y - 7= [tex]- \frac{2}{3}[/tex]  ( x + 3 )

      3 ( y - 7)  =  - 2 ( x + 3)

      3 y -21 = -2 x - 6

      2 x + 3 y = 21 - 6

      2 x + 3 y = 15

Hence the equation of the required line whose passes trough the points ( - 3, 7) & ( 3, 3)  is 2 x + 3 y = 15.

ACCESS MORE