Respuesta :

Answer:

(27)

  • Velocity of salmon is 18m/s.

(28)

  • Rocket's totle time in the air is 4.48 second.
  • Rocket's maximum height is 33.58 meter.
  • Rocket will land 91.6 meter away.

(29)

  • Final velocity is 23.96m/s.

(30)

  • (a) Peak height is 24.8 meter.
  • (b) Initial angle is 23.45°.
  • (c) Initial velocity is 55.4m/s

Explanation:

Projectile Motion: When a body is launched in air at an angle [tex]\theta[/tex] with the horizontal  with speed [tex]v[/tex] ,It makes a certain trajectory in influence of gravity.

Time of flight of projectile, [tex]T=\frac{2v\sin\theta}{g}[/tex]

Maximum height of projectile, [tex]H_m=\frac{v^2\sin^2\theta}{2g}[/tex]

Horizontal range of projectile, [tex]R=\frac{v^2\sin2\theta}{g}[/tex]

  • (27)

Given,

Distance of final position of salmon from base of cliff, [tex]D=90meter[/tex]

Height of cliff, [tex]H=122.5meter[/tex]

If the salmon is launched horizontally, the vertical component of velocity [tex]v_y[/tex] will be zero.

Using second equation of motion,

[tex]H=v_yt-\frac{1}{2}gt^2 \\122.5=0-\frac{gt^2}{2} \\t=5second[/tex]

Let horizontal component of velocity is [tex]v_x[/tex]. Time taken to reach 90 meter away from base is 5 second.

So, [tex]v_x=\frac{D}{t}=\frac{90}{5}\\  =18second[/tex]

Hence, Velocity, [tex]v=v_x+v_y=0+18\\=18m/s[/tex]

  • (28)

Given,

Initial velocity, [tex]v=30m/s[/tex]

Angle, [tex]\theta=47^0[/tex]

(a)

Totle time, [tex]T=\frac{2v\sin\theta}{g}\\=\frac{2\times30\times\sin47^0}{9.8}\\=4.48second[/tex]

So, Rocket's totle time in the air is 4.48 second.

(b)

Maximum height, [tex]H_m=\frac{v^2\sin^2\theta}{2g}\\=\frac{30^2\times\sin^247}{2\times9.8}\\33.58meter[/tex]

So, Rocket's maximum height is 33.58 meter.

(c)

Range, [tex]R=\frac{v^2\sin2\theta}{g}\\=\frac{30^2\sin(2\times47)}{9.8}\\ 91.6meter[/tex]

So, Rocket will land 91.6 meter away.

  • (29)

Given,

Since, It started from rest, then initial velocity [tex]u=0[/tex]

Acceleration, [tex]a=7m/s^2[/tex]

Distance traveled, [tex]S=41meter[/tex]

Using third equation of motion

[tex]v^2-u^2=2as\\v=\sqrt{2as}\\=\sqrt{2\times7\times41}\\ =23.96m/s[/tex]

So, Final velocity is 23.96m/s.

  • (30)

Given,

Range of trebuchet, [tex]R=225meter[/tex]

Time of flight, [tex]T=4.5second[/tex]

Now,

[tex]T=\frac{2v\sin\theta}{g} =4.5\\v\sin\theta=\frac{4.5\times9.8}{2} =22.05\\H_m=\frac{(v\sin\theta)^2}{2g} =\frac{22.5^2}{2\times9.8}=24.8meter\\\frac{R}{H_m}=\frac{v^2\times\sin2\theta\times2\times9.8}{v^2\times\sin^2\theta\times9.8} =\frac{225}{24.8} \\\cot\theta=\frac{225}{24.8\times4} \\\theta=23.45^0\\[/tex]

Put value [tex]\theta[/tex]

[tex]\frac{2v\sin\theta}{g} =4.5\\v=\frac{4.5\times9.8}{2\times\sin23.45}=55.4m/s\\[/tex]

Hence

(a) Peak height is 24.8 meter.

(b) Initial angle is 23.45°.

(c) Initial velocity is 55.4m/s

ACCESS MORE