I need answers for the problems listed below

Answer:
(27)
(28)
(29)
(30)
Explanation:
Projectile Motion: When a body is launched in air at an angle [tex]\theta[/tex] with the horizontal with speed [tex]v[/tex] ,It makes a certain trajectory in influence of gravity.
Time of flight of projectile, [tex]T=\frac{2v\sin\theta}{g}[/tex]
Maximum height of projectile, [tex]H_m=\frac{v^2\sin^2\theta}{2g}[/tex]
Horizontal range of projectile, [tex]R=\frac{v^2\sin2\theta}{g}[/tex]
Given,
Distance of final position of salmon from base of cliff, [tex]D=90meter[/tex]
Height of cliff, [tex]H=122.5meter[/tex]
If the salmon is launched horizontally, the vertical component of velocity [tex]v_y[/tex] will be zero.
Using second equation of motion,
[tex]H=v_yt-\frac{1}{2}gt^2 \\122.5=0-\frac{gt^2}{2} \\t=5second[/tex]
Let horizontal component of velocity is [tex]v_x[/tex]. Time taken to reach 90 meter away from base is 5 second.
So, [tex]v_x=\frac{D}{t}=\frac{90}{5}\\ =18second[/tex]
Hence, Velocity, [tex]v=v_x+v_y=0+18\\=18m/s[/tex]
Given,
Initial velocity, [tex]v=30m/s[/tex]
Angle, [tex]\theta=47^0[/tex]
(a)
Totle time, [tex]T=\frac{2v\sin\theta}{g}\\=\frac{2\times30\times\sin47^0}{9.8}\\=4.48second[/tex]
So, Rocket's totle time in the air is 4.48 second.
(b)
Maximum height, [tex]H_m=\frac{v^2\sin^2\theta}{2g}\\=\frac{30^2\times\sin^247}{2\times9.8}\\33.58meter[/tex]
So, Rocket's maximum height is 33.58 meter.
(c)
Range, [tex]R=\frac{v^2\sin2\theta}{g}\\=\frac{30^2\sin(2\times47)}{9.8}\\ 91.6meter[/tex]
So, Rocket will land 91.6 meter away.
Given,
Since, It started from rest, then initial velocity [tex]u=0[/tex]
Acceleration, [tex]a=7m/s^2[/tex]
Distance traveled, [tex]S=41meter[/tex]
Using third equation of motion
[tex]v^2-u^2=2as\\v=\sqrt{2as}\\=\sqrt{2\times7\times41}\\ =23.96m/s[/tex]
So, Final velocity is 23.96m/s.
Given,
Range of trebuchet, [tex]R=225meter[/tex]
Time of flight, [tex]T=4.5second[/tex]
Now,
[tex]T=\frac{2v\sin\theta}{g} =4.5\\v\sin\theta=\frac{4.5\times9.8}{2} =22.05\\H_m=\frac{(v\sin\theta)^2}{2g} =\frac{22.5^2}{2\times9.8}=24.8meter\\\frac{R}{H_m}=\frac{v^2\times\sin2\theta\times2\times9.8}{v^2\times\sin^2\theta\times9.8} =\frac{225}{24.8} \\\cot\theta=\frac{225}{24.8\times4} \\\theta=23.45^0\\[/tex]
Put value [tex]\theta[/tex]
[tex]\frac{2v\sin\theta}{g} =4.5\\v=\frac{4.5\times9.8}{2\times\sin23.45}=55.4m/s\\[/tex]
Hence
(a) Peak height is 24.8 meter.
(b) Initial angle is 23.45°.
(c) Initial velocity is 55.4m/s