Respuesta :
Answer:
[tex]T = 1.06 \times 10^{-3} N. mm[/tex]
Explanation:
Given data:
[tex]\mu = 0.1 N-s /m^2[/tex]
d = 30 mm = 0.03 m
dy = 2.0 mm
L = 3 cm
[tex]\omega = 350 rad/s[/tex]
we know
[tex]u = r\omega [/tex]
[tex]u = 0.15 \times 350 = 52.5 N/s[/tex]
[tex]\tau = \mu \frac{du}{dy} = 0.1 \times \frac{1}{.002} = 100 N/m^2[/tex]
[tex]T = \tau A r[/tex]
[tex] = 100 \times \frac{\pi}{4} 0.03^2 \times 0.015 [/tex]
[tex]T = 1.06 \times 10^{-3} N. mm[/tex]
The torque required to turn the bearing assuming that the flow between the shaft and the casing is a Couette flow is; T = 2.78 × 10⁻³ N/m
Calculation of Torque
We are given;
Viscosity; μ = 0.1 N.s/m²
diameter; d = 30 mm = 0.03 m
radius; r = d/2 = 0.015 m
Gap between shaft and casing; dy = 2 mm = 0.002 m
Length of bearing; L = 0.03 m
Angular velocity; ω = 350 rad/s
du = rω
du = 0.015 × 350 = 5.25 N/s
Formula for stree is;
τ = μ(du/dy)
τ = 0.1 × (5.25/0.002)
τ = 262.5 N/m²
To find torque, we will use the formula;
T = τ*A*r
T = 262.5 * π * 0.015² * 0.015
T = 2.78 × 10⁻³ N/m
Read more about finding Torque at; https://brainly.com/question/20691242