Answer:
2.01 m
Explanation:
Given parameters:
Mass, m = 17.6 kg
Velocity, v = 2.25 m/s
Degree = 19°
Coefficient of kinetic friction, [tex]\mu_k[/tex] = 0.48
To find the distance, we need to use Work-Energy principle.
So, total energy must be equal to the work done by friction. Here total energy is sum of the initial kinetic energy and the loss in potential energy.
[tex]E_K = \frac{1}{2}mv^2\\E_P = mgxsin(\theta)\\W_{fr} = \mu_k mgcos(\theta)x\\[/tex]
So, [tex]\frac{1}{2}mv^2 + mgxsin(\theta) = \mu_k mgcos(\theta)x[/tex]
[tex]x = \frac{\frac{1}{2}mv^2}{\mu_k mgcos(\theta)-mgsin(\theta)} = \frac{\frac{1}{2}* 2.25^2}{0.48*9.8*cos(19)-9.8*sin(19)} = 2.01[/tex] m