Respuesta :
The electric potential is a scalar unit, so we don't have to struggle with the vectors. The formula that gives electric potential is
[tex]V = \frac{1}{4\pi\epsilon_0}\frac{q}{r}[/tex]
1) At point a, the electric potential is the sum of the potentials due to q1 and q2. So,
[tex]V_a = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}[/tex]
The distance from the center of the square to one of the corners is [tex]\sqrt2 L/2 = 0.035m[/tex]
[tex]V_a = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.035} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.035} = 0[/tex]
The answer is zero, because the point charges are at equal distances and their magnitudes are also equal but their directions are opposite.
2) [tex]V_b = \frac{1}{4\pi\epsilon_0}\frac{q_1}{r_1} + \frac{1}{4\pi\epsilon_0}\frac{q_2}{r_2}[/tex]
[tex]r_1 = 0.05\sqrt2m\\r_2 = 0.05m[/tex]
[tex]V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05\sqrt2} + \frac{1}{4\pi\epsilon_0}\frac{-2\times10^{-6}}{0.05}\\V_b = \frac{1}{4\pi\epsilon_0}\frac{2\times10^{-6}}{0.05} (\frac{1}{\sqrt2}-1)\\V_b = \frac{1}{4\pi\epsilon_0} (4\times 10^{-5})(-0.29)\\V_b = (-\frac{2.9\times10^{-6}}{\pi\epsilon_0})[tex]
3) The work done on q3 by q1 and q2 is equal to the difference between energies. This is the work-energy theorem. So,
[tex]W = U_b - U_a[/tex]
[tex]U = \frac{1}{4\pi\epsilon_0}\frac{q_1q_3}{r} = Vq_3[/tex]
[tex]W = q_3(V_b - V_a) = q_3(V_b - 0)\\W = (-2\times10^{-6})(-\frac{2.9\times10^{-6}}{\pi\epsilon_0})\\W = \frac{5.8\times10^{-12}}{\pi\epsilon_0}[/tex]