Answer:
Part a) [tex]A=600(1.021)^{t}[/tex]
Part b) [tex]t=13.84\ years[/tex]
Step-by-step explanation:
Part a)
we know that
The compound interest formula is equal to
[tex]A=P(1+\frac{r}{n})^{nt}[/tex]
where
A is the Final Investment Value
P is the Principal amount of money to be invested
r is the rate of interest in decimal
t is Number of Time Periods
n is the number of times interest is compounded per year
in this problem we have
[tex]P=\$600\\ r=2.1\%=2.1/100=0.021\\n=1[/tex]
substitute in the formula above
[tex]A=600(1+\frac{0.021}{1})^{1*t}[/tex]
[tex]A=600(1.021)^{t}[/tex]
Part b) For [tex]A=\$800[/tex]
substitute in the expression
[tex]A=600(1.021)^{t}[/tex]
[tex]800=600(1.021)^{t}[/tex]
simplify
[tex]\frac{8}{6}=(1.021)^{t}[/tex]
Apply log both sides
[tex]log(\frac{8}{6})=log[(1.021)^{t}][/tex]
[tex]log(\frac{8}{6})=(t)log(1.021)[/tex]
[tex]t=log(\frac{8}{6})/log(1.021)[/tex]
[tex]t=13.84\ years[/tex]