Answer:
The kinetic energy of the airplane is [tex]128\times 10^6\ J[/tex]
Explanation:
Given:
Mass of the airplane is, [tex]m=40000\ kg[/tex]
Velocity of the airplane is, [tex]v=80\ m/s[/tex]
Height of airplane is, [tex]H=2000\ m[/tex]
Kinetic energy of a body is independent of the height and only depends on its velocity.
Kinetic energy of a body of mass 'm' and moving with a velocity 'v' is given as:
[tex]KE=\frac{1}{2}mv^2[/tex]
Where [tex]KE\to Kinetic\ energy[/tex]
Now, plug in 40000 kg for 'm', 80 m/s for 'v' and solve for 'KE'. This gives,
[tex]KE=\frac{1}{2}\times (40000\ kg)\times (80\ m/s)^2\\\\KE=20000\times 6400\ kg\cdot m^2/s^2\\\\KE=128\times 10^6\ J.....[1\ J=1\ kg\cdot m^2/s^2][/tex]
Therefore, the kinetic energy of the airplane is [tex]128\times 10^6\ J[/tex]