Answer:
The explanation of how the figure illustrates that 6(9) = 6(4) + 6(5) is below.
[tex]6\times 9 = 6\times 4 +6\times 5[/tex]
Step-by-step explanation:
Consider a Rectangle ABCD segregate in two Rectangle by a Dash Line
i.e Rectangle AEFD and
Rectangle EBCF
We Know
[tex]\textrm{Area of Rectangle}=Length\times Width[/tex]
For Rectangle ABCD we have
Length = 6
Width = 9
[tex]\therefore \textrm{Area of Rectangle ABCD}=6\times 9[/tex]..........( 1 )
So For Rectangle AEFD we have
Length = 6
Width = 4
[tex]\therefore \textrm{Area of Rectangle AEFD}=6\times 4[/tex]..........( 2 )
Similarly, For Rectangle EBCF we have
Length = 6
Width = 5
[tex]\therefore \textrm{Area of Rectangle EBCF}=6\times 5[/tex]..........( 3 )
Now,
[tex]\textrm{Area of Rectangle ABCD}=\textrm{Area of Rectangle AEFD}+\textrm{Area of Rectangle EBCF}[/tex]
Substituting the values we get
[tex]6\times 9 = 6\times 4 +6\times 5[/tex]
Which is equal to
So, 6(9) = 6(4) + 6(5).