Answer:
[tex]E[R][/tex] = 99 Ω
[tex]\sigma_R[/tex] = 2.3094 Ω
P(98<R<102) = 0.5696
Step-by-step explanation:
The mean resistance is the average of edge values of interval.
Hence,
The mean resistance, [tex]E[R] = \frac{a+b}{2} = \frac{95+103}{2} = \frac{198}{2}[/tex] = 99 Ω
To find the standard deviation of resistance, we need to find variance first.
[tex]V(R) = \frac{(b-a)^2}{12} =\frac{(103-95)^2}{12} = 5.333[/tex]
Hence,
The standard deviation of resistance, [tex]\sigma_R = \sqrt{V(R)} = \sqrt5.333[/tex] = 2.3094 Ω
To calculate the probability that resistance is between 98 Ω and 102 Ω, we need to find Normal Distributions.
[tex]z_1 = \frac{102-99}{2.3094} = 1.299[/tex]
[tex]z_2 = \frac{98-99}{2.3094} = -0.433[/tex]
From the Z-table, P(98<R<102) = 0.9032 - 0.3336 = 0.5696