Respuesta :
Answer:
The average power is [tex]4.71\times10^{-8}\ watt[/tex]
Explanation:
Given that,
A sinusoidal oscillating current I ( t ) with an amplitude of 4.55 A .
Frequency = 879 cycles
Side b = 45.2 cm
Side c=20.3 cm
Side a = 50.2 cm
Resistance = 84.3 Ω
We need to calculate the angular frequency
Using formula of angular frequency
[tex]\omega=2\pi f[/tex]
Put the value into the formula
[tex]\omega=2\times\pi\times879[/tex]
[tex]\omega=5522.91\ rad/s[/tex]
We need to write the sinusoidal equation
[tex]I(t)=A(\sin\omega t)[/tex]
[tex]I(t)=4.55\sin(5522.91 t)[/tex]
We need to calculate the magnetic flux
Using formula of flux
[tex]\phi=\int{B\cdot dA}[/tex]
[tex]\phi=\int{\dfrac{\mu_{0}I}{2\pi r}dA}[/tex]
[tex]\phi=\dfrac{\mu_{0}I}{2\pi}\int_{c}^{a+c}{\dfrac{dr}{r}}[/tex]
[tex]\phi=\dfrac{\mu_{0}Ib}{2\pi}ln(\dfrac{a+c}{c})[/tex]
[tex]\phi=\dfrac{\mu_{0}b}{2\pi}ln(\dfrac{a+c}{c})(4.55\sin(5522.91 t))[/tex]
We need to calculate the induced emf
Using formula of induced emf
[tex]E=-\dfrac{d\phi}{dt}[/tex]
[tex]E=-4.55\times\dfrac{\mu_{0}b}{2\pi}ln(\dfrac{a+c}{c})\times5522.91\times\cos(5522.91 t))[/tex]
Put the value into the formula
[tex]E=-4.55\times5522.91\times\dfrac{4\pi\times10^{-7}\times0.452}{2\pi}ln(\dfrac{0.502+0.203}{0.203})\times\cos(5522.91 t)[/tex]
[tex]E=-0.00282\times\cos(5522.91 t)[/tex]
[tex]E=-2.82\times10^{-3}\cos(5522.91 t)[/tex]
We need to calculate the average power
Using formula of average power
[tex]P=\dfrac{1}{2}\dfrac{E^2}{R}[/tex]
Put the value into the formula
[tex]P=\dfrac{1}{2}\dfrac{(-2.82\times10^{-3})^2}{84.3}[/tex]
[tex]P=4.71\times10^{-8}\ watt[/tex]
Hence, The average power is [tex]4.71\times10^{-8}\ watt[/tex]
The average power dissipated by the given loop if its resistance is 84.3 Ω is; P_avg = 3.44 × 10⁻⁹ W
We are given;
We are given;
Current; I₀ = 4.55 A
Frequency; f = 879 cycles/s
b = 45.2 cm = 0.452 m
c = 20.3 cm = 0.203 m
a = 50.2 cm = 0.502 m
The formula for the magnetic flux is;
Φ = [tex]\frac{\mu_{0}*I * c}{2\pi} * In \frac{b + a}{b}}[/tex]
Where μ₀ is vacuum permeability with a constant value of 4π × 10⁻⁷ H/m
Meanwhile, the formula for the RMS value of the EMF is;
[tex]E_{rms}[/tex] = [tex]\frac{(\frac{\mu_{0}*c}{2\pi} * In \frac{b + a}{b} * I_{0} * 2\pi f)}{\sqrt{2}}[/tex]
Plugging in the relevant values gives;
[tex]E_{rms}[/tex] = [tex]\frac{(\frac{4\pi * 10^{-7}*0.203}{2\pi} * In \frac{0.452 + 0.502}{0.452} * 4.55 * 2\pi *879)}{\sqrt{2}}[/tex]
[tex]E_{rms}[/tex] = 5.389 × 10⁻⁴ V
We want to find the average power dissipated by the loop if the resistance is 84.3 Ω .
Formula for power is; P = V²/R
Thus;
P_avg = (5.389 × 10⁻⁴)²/84.3
P_avg = 3.44 × 10⁻⁹ W
Read more at; https://brainly.com/question/15901901