Respuesta :
Answer:
a) We would expect to see 500*0.88=440
b) [tex]z=\frac{0.9 -0.88}{\sqrt{\frac{0.88(1-0.88)}{500}}}=1.376[/tex]
[tex]p_v =2*P(Z>1.376)=0.167[/tex]
So the p value obtained was a very high value and using the significance level assumed [tex]\alpha=0.05[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 5% of significance the true proportion is not significant different from 0.9.
The p value is a criterion to decide if we reject or not the null hypothesis, when [tex]p_v <\alpha[/tex] we reject the null hypothesis in other case we FAIL to reject the null hypothesis. And represent the "probability of obtaining the observed results of a test, assuming that the null hypothesis is correct".
Step-by-step explanation:
Data given and notation
n=500 represent the random sample taken
X=450 represent the people that have the seat belt fastened
[tex]\hat p=\frac{450}{500}=0.9[/tex] estimated proportion of people that have the seat belt fastened
[tex]p_o=0.88[/tex] is the value that we want to test
[tex]\alpha[/tex] represent the significance level
z would represent the statistic (variable of interest)
[tex]p_v{/tex} represent the p value (variable of interest)
Part a
We would expect to see 500*0.88=440
Part b
Concepts and formulas to use
We need to conduct a hypothesis in order to test the claim that the true proportion changes fro m 0.88.:
Null hypothesis:[tex]p=0.88[/tex]
Alternative hypothesis:[tex]p \neq 0.88[/tex]
When we conduct a proportion test we need to use the z statisitc, and the is given by:
[tex]z=\frac{\hat p -p_o}{\sqrt{\frac{p_o (1-p_o)}{n}}}[/tex] (1)
The One-Sample Proportion Test is used to assess whether a population proportion [tex]\hat p[/tex] is significantly different from a hypothesized value [tex]p_o[/tex].
Calculate the statistic
Since we have all the info requires we can replace in formula (1) like this:
[tex]z=\frac{0.9 -0.88}{\sqrt{\frac{0.88(1-0.88)}{500}}}=1.376[/tex]
Statistical decision
It's important to refresh the p value method or p value approach . "This method is about determining "likely" or "unlikely" by determining the probability assuming the null hypothesis were true of observing a more extreme test statistic in the direction of the alternative hypothesis than the one observed". Or in other words is just a method to have an statistical decision to fail to reject or reject the null hypothesis.
The significance level assumed is [tex]\alpha=0.05[/tex]. The next step would be calculate the p value for this test.
Since is a bilateral test the p value would be:
[tex]p_v =2*P(Z>1.376)=0.167[/tex]
So the p value obtained was a very high value and using the significance level assumed [tex]\alpha=0.05[/tex] we have [tex]p_v>\alpha[/tex] so we can conclude that we have enough evidence to FAIL to reject the null hypothesis, and we can said that at 5% of significance the true proportion is not significant different from 0.9.
The p value is a criterion to decide if we reject or not the null hypothesis, when [tex]p_v <\alpha[/tex] we reject the null hypothesis in other case we FAIL to reject the null hypothesis. And represent the "probability of obtaining the observed results of a test, assuming that the null hypothesis is correct".