Answer:
[tex]radius=5\ cm[/tex]
Step-by-step explanation:
Let r be the radius of the circle and A be the area of the circle.
Given:
[tex]r_{1} = 2\ cm, A_{1}=12.566\ cm^{2}[/tex]
And [tex]r_{2} = ?, A_{2}=78.54\ cm^{2}[/tex]
The area of a circle is directly proportional to the square of its radius.
A ∝ [tex]r^{2}[/tex]
[tex]A = kr^{2}[/tex]-----------(1)
Where k is the constant of proportionality
Find constant value by substituting [tex]r_{1} = 2\ cm, A_{1}=12.566\ cm^{2}[/tex]
in equation 1.
[tex]A = kr^{2}[/tex]
[tex]A_{1}=k(r_{1})^{2}[/tex]
[tex]12.566=k\times 2^{2}[/tex]
[tex]12.566=k\times 4[/tex]
[tex]k=\frac{12.566}{4}[/tex]
[tex]k=3.141[/tex]
Find [tex]r_{2}[/tex] by substituting k and [tex]A_{2}[/tex] value in equation 1.
[tex]A = kr^{2}[/tex]
[tex]A_{2}=k(r_{2})^{2}[/tex]
[tex]12.566=3.141\times (r_{2})^{2}[/tex]
[tex](r_{2})^{2}=\frac{78.54}{3.141}[/tex]
[tex](r_{2})^{2}=25.004[/tex]
where: 25.004 ≅ 25
[tex](r_{2})^{2}=25[/tex]
[tex]r_{2}=\sqrt{25}[/tex]
[tex]r_{2}=5\ cm[/tex]
Therefore; the radius of the circle is 5 cm.