contestada

The area of a circle is directly
proportional to the square of its
radius. A circle with a radius of 2
cm has an area of 12.566 cm^2.
What is the radius of a circle with
an area of 78.54 cm^2?
[?] cm
Round to the nearest whole number.

Respuesta :

Answer:

[tex]radius=5\ cm[/tex]

Step-by-step explanation:

Let r be the radius of the circle and A be the area of the circle.

Given:

[tex]r_{1} = 2\ cm, A_{1}=12.566\ cm^{2}[/tex]

And [tex]r_{2} = ?, A_{2}=78.54\ cm^{2}[/tex]

The area of a circle is directly  proportional to the square of its  radius.

A ∝ [tex]r^{2}[/tex]

[tex]A = kr^{2}[/tex]-----------(1)

Where k is the constant of proportionality

Find constant value by substituting [tex]r_{1} = 2\ cm, A_{1}=12.566\ cm^{2}[/tex]

in equation 1.

[tex]A = kr^{2}[/tex]

[tex]A_{1}=k(r_{1})^{2}[/tex]

[tex]12.566=k\times 2^{2}[/tex]

[tex]12.566=k\times 4[/tex]

[tex]k=\frac{12.566}{4}[/tex]

[tex]k=3.141[/tex]

Find [tex]r_{2}[/tex] by substituting k and [tex]A_{2}[/tex] value in equation 1.

[tex]A = kr^{2}[/tex]

[tex]A_{2}=k(r_{2})^{2}[/tex]

[tex]12.566=3.141\times (r_{2})^{2}[/tex]

[tex](r_{2})^{2}=\frac{78.54}{3.141}[/tex]

[tex](r_{2})^{2}=25.004[/tex]

where: 25.004 ≅ 25

[tex](r_{2})^{2}=25[/tex]

[tex]r_{2}=\sqrt{25}[/tex]

[tex]r_{2}=5\ cm[/tex]

Therefore; the radius of the circle is 5 cm.

ACCESS MORE