Answer:
The Solution is below. That is the option a. -4sin (θ)cos (θ)
Step-by-step explanation:
Simplify: (sin θ − cos θ)2 − (sin θ + cos θ)2
Solution:
We know the Identity
[tex]A^{2}- B^{2}=(A+B)(A-B)[/tex]
Applying this Identity we get
[tex](\sin \theta - \cos \theta)^{2} -(\sin \theta + \cos \theta)^{2} =((\sin \theta - \cos \theta)+(\sin \theta + \cos \theta))((\sin \theta - \cos \theta)-(\sin \theta + \cos \theta))\\[/tex]
Now Plus sin θ Minus sin θ and Plus cos θ Minus cos θ will cancel each other then we have,
[tex](\sin \theta - \cos \theta)^{2} -(\sin \theta + \cos \theta)^{2} =(2\sin \theta)(-2\cos \theta)\\(\sin \theta - \cos \theta)^{2} -(\sin \theta + \cos \theta)^{2} =-4\sin \theta\cos \theta\\\\As\ Required\ in\ option\ a.[/tex]
The Solution is the option a. -4sin (θ)cos (θ)