Answer:
A: 6 and 24
B: 4 times as great; the rate of change increases exponentially
Step-by-step explanation:
Part A: The average rate of change on the interval [a, b] is given by ...
average rate of change = (h(b) -h(a))/(b -a)
On the interval [1, 2], the rate of change is ...
(h(2) -h(1))/(2 -1) = (12 -6)/1 = 6
On the interval [3, 4], the rate of change is ...
(h(4) -h(3))/(4 -3) = (48 -24)/1 = 24
For Section A, the average rate of change is 6; for Section B, the average rate of change is 24.
__
Part B: The ratio of the rates of change on the two intervals is ...
(RoC on [3,4]) / (RoC on [1,2]) = 24/6 = 4
The average rate of change of Section B is 4 times that of Section A.
__
The rate of change is exponentially increasing, so an interval of the same width that starts at "d" units more than the previous one will have a rate of change that is 2^d times as much.