Respuesta :
Answer:
The heat energy transfer required to raise the temperature of 13.0 kg liquid ammonia from -50.0 °C to 0.0 °C is 36,896.44 kJ.
Explanation:
The process involved in this problem are :
[tex](1):NH_3(l)(-50^oC)\rightarrow NH_3(l)(-33.4^oC)\\\\(2):NH_3(l)(-33.4^oC)\rightarrow NH_3(g)(-33.4^oC)[/tex]
[tex](3):NH_3(g)(-33.4^oC)\rightarrow NH_3(g)(-0.0^oC)[/tex]
Now we have to calculate the amount of heat released or absorbed in both processes.
For process 1 :
[tex]Q_1=m\times c_{1}\times (T_{final}-T_{initial})[/tex]
where,
[tex]Q_1[/tex] = amount of heat absorbed = ?
m = mass of ammonia = 13000 g
[tex]c_1[/tex] = specific heat of liquid ammonia = [tex]4.7J/g^oC[/tex]
[tex]T_1[/tex] = initial temperature = [tex]-50.0^oC[/tex]
[tex]T_2[/tex] = final temperature = [tex]-33.4^oC[/tex]
Now put all the given values in [tex]Q_3[/tex], we get:
[tex]Q_1=13000 g\times 4.7 J/g^oC\times ((-33.4)-(-50.0))^oC[/tex]
[tex]Q_1=1,014,260 J=1.1014.260 kJ[/tex]
For process 2 :
[tex]Q_2=n\times \Delta H_{fusion}[/tex]
where,
[tex]Q_2[/tex] = amount of heat absorbed = ?
m = mass of solid ammonia = 13.0 Kg = 13000 g
n = Moles of ammonia = [tex]\frac{13000 g}{17 g/mol}=764.71 mol[/tex]
[tex]\Delta H_{vap}[/tex] = enthalpy change for vaporization=23.5 kJ/mol
Now put all the given values in [tex]Q_1[/tex], we get:
[tex]Q_2=764.71 mol\times 23.5 kJ/mol=17,970.6 kJ[/tex]
For process 3 :
[tex]Q_3=m\times c_{p,l}\times (T_{final}-T_{initial})[/tex]
where,
[tex]Q_3[/tex] = amount of heat absorbed = ?
m = mass of ammonia = 13000 g
[tex]c_2[/tex] = specific heat of gaseous ammonia = [tex]2.2J/g^oC[/tex]
[tex]T_1[/tex] = initial temperature = [tex]-33.4^oC[/tex]
[tex]T_2[/tex] = final temperature = [tex]0.0^oC[/tex]
Now put all the given values in [tex]Q_3[/tex], we get:
[tex]Q_3=13000 g\times 2.2J/g^oC\times (0.0-(-33.4))^oC[/tex]
[tex]Q_3=955,240 J=955.240 kJ[/tex]
The heat energy transfer required to raise the temperature of 13.0 kg liquid ammonia from -50.0 °C to 0.0 °C = Q
[tex]Q=Q_1+Q_2+Q_3=17,970.6 kJ+17,970.6 kJ+955.240 kJ[/tex]
Q = 36,896.44 kJ