Respuesta :
Answer:
[tex]68[/tex]
Step-by-step explanation:
First let use cosine rule to determine the angle opposite to the resultant force of 10lb
[tex]c^{2}=a^{2}+b^{2}-2abcosC\\ 10^{2}=15^{2}+8^{2}-2*15*8cosC\\ C=cos^{-1}(0.7875)\\C=38.04^{0}[/tex]
from the diagram in the attachment(not drawn to scale) we can model what the the diagram will look like.
using the sine rule to determine the angle the 10lb make with the 8lb
[tex]\frac{15}{sin\alpha } =\frac{10}{sin38.04} \\sin\alpha =0.9243\\\alpha =sin^{-1}(0.9243)\\ \alpha =67.56[/tex]
Hence the angle formed to the nearest degree is [tex]68[/tex]
Answer:
The angle formed, to the nearest degree, between the resultant and the smaller force is 112°
Step-by-step explanation:
By using the cosine rule ; a2= b2 + c2 - 2bc cosa
15^2= 8^2 +10^2 - 2×8×10 cos A
225 =64 + 100 - 2×8×10 cosa
225= 164-160cosA
160 cosA= 164-225
CosA= -61/160
A= cos inverse(-0.38125)
A= 112°
