Answer:
125.04181 W
Explanation:
[tex]\sigma[/tex] = Stefan-Boltzmann constant = [tex]5.67\times 10^{-8}\ W/m^2K^4[/tex]
A = Surface area = 1.9 m²
[tex]T_b[/tex] = Skin surface temperature = 19°C
[tex]T_s[/tex] = Room temperature = 30°C
[tex]\epsilon[/tex] = Emissivity = 1
Radiated thermal energy is given by
[tex]P=\epsilon A\sigma (T_b^4-T_s^4)\\\Rightarrow P=1\times 1.9\times 5.67\times 10^{-8}((273.15+30)^4-(273.15+19)^4)\\\Rightarrow P=125.04181\ W[/tex]
The net amount of heat this person could radiate per second into the room is 125.04181 W