Respuesta :
To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzmann law which establishes that a black body emits thermal radiation with a total hemispheric emissive power (W / m²) proportional to the fourth power of its temperature.
Heat flow is obtained as follows:
[tex]Q = FA\sigma\Delta T^4[/tex]
Where,
F =View Factor
A = Cross sectional Area
[tex]\sigma =[/tex] Stefan-Boltzmann constant
T= Temperature
Our values are given as
D = 0.6m
[tex]L = 0.4m\\T_1 = 450K\\T_2 = 450K\\T_3 = 300K[/tex]
The view factor between two coaxial parallel disks would be
[tex]\frac{L}{r_1} = \frac{0.4}{0.3}= 1.33[/tex]
[tex]\frac{r_2}{L} = \frac{0.3}{0.4} = 0.75[/tex]
Then the view factor between base to top surface of the cylinder becomes [tex]F_{12} = 0.26[/tex]. From the summation rule
[tex]F_{13} = 1-0.26[/tex]
[tex]F_{13} = 0.74[/tex]
Then the net rate of radiation heat transfer from the disks to the environment is calculated as
[tex]\dot{Q_3} = \dot{Q_{13}}+\dot{Q_{23}}[/tex]
[tex]\dot{Q_3} = 2\dot{Q_{13}}[/tex]
[tex]\dot{Q_3} = 2F_{13}A_1 \sigma (T_1^4-T_3^4)[/tex]
[tex]\dot{Q_3} = 2(0.74)(\pi*0.3^2)(5.67*10^{-8})(450^4-300^4)[/tex]
[tex]\dot{Q_3} = 780.76W[/tex]
Therefore the rate heat radiation is 780.76W
