A simple harmonic wave of wavelength 18.7 cm and amplitude 2.34 cm is propagating along a string in the negative x-direction at 38.0 cm/s. Find its (a) angular frequency and (b) wave number. (c) Write a mathematical expression describing the displacement y of this wave (in centimeters) as a function of position and time. Assume the maximum displacement occurs when t = 0.

Respuesta :

Answer

given,

wavelength = λ = 18.7 cm

                    = 0.187 m

amplitude , A = 2.34 cm

v = 0.38 m/s

A)  angular frequency = ?

     [tex]f = \dfrac{v}{\lambda}[/tex]

     [tex]f = \dfrac{0.38}{0.187}[/tex]

     [tex]f =2.03\ Hz[/tex]

angular frequency ,

ω = 2π f

ω = 2π x 2.03

ω = 12.75 rad/s

B) the wave number ,

      [tex]K = \dfrac{2\pi}{\lambda}[/tex]

     [tex]K= \dfrac{2\pi}{0.187}[/tex]

    [tex]K =33.59\ m^{-1}[/tex]

C)

as the wave is propagating in -x direction, the sign is positive between x and t

y ( x ,t) = A sin(k  x - ω t)

y ( x ,t) = 2.34  x  sin(33.59 x - 12.75 t)

ACCESS MORE