Answer: [tex]\frac{\sqrt{6}-\sqrt{2}}{2} [/tex]
Step-by-step explanation:
We apply the formula [tex]\cos(x+y)=\cos(x)\cos(y)-\sin(x)\sin(y) [/tex].
Note that [tex]\cos(\frac{41}{12}\pi)=\cos((\frac{36}{12}+\frac{7}{12})\pi)=\cos(3\pi + \frac{7}{12})\pi) [/tex]. Take [tex]x=3\pi[/tex] and [tex]y=\frac{7}{12}\pi[/tex] in the formula above to get
[tex]\cos(\frac{41}{12}\pi)=\cos(3\pi)\cos(\frac{7}{12}\pi)-\sin(3\pi)\sin(\frac{7}{12}\pi)=(-1)\cdot \cos(\frac{7}{12}\pi)-0\cdot\sin(\frac{7}{12}\pi)=-\cos(\frac{7}{12}\pi)[/tex]
Then the value of this expression is [tex]-\cos(\frac{7}{12}\pi) [/tex]
We can use the cosine addition formula again to simplify further. Decompose the fraction in the argument as:
[tex]\cos(\frac{7}{12}\pi)=\cos((\frac{3}{12}+\frac{4}{12})\pi)=\cos((\frac{1}{4}\pi + \frac{1}{3})\pi) [/tex]
Applying the formula with [tex]x=\frac{1}{4}\pi[/tex] and [tex]y=\frac{1}{3}\pi[/tex] we obtain
[tex]\cos(\frac{7}{12}\pi)=\cos(\frac{1}{4}\pi)\cos(\frac{1}{3}\pi)-\sin(\frac{1}{4}\pi)\sin(\frac{1}{3}\pi)=\frac{\sqrt{2}}{2}\cdot\frac{1}{2} -\frac{\sqrt{2}}{2}\cdot\frac{\sqrt{3}}{2}=\frac{\sqrt{2}-\sqrt{6}}{2} [/tex]
We conclude that this expression has the value [tex]-\frac{\sqrt{2}-\sqrt{6}}{2}=\frac{\sqrt{6}-\sqrt{2}}{2} [/tex]