As part of a biological research project, researchers need to quantify the density of a certain type of malignant cell in blood. In order to assure the accuracy of measurement, two experienced researchers each make a sequence of separate counts of the number of such cells in the same blood sample. The 7 counts of the first researcher have a mean of 140.2 and a standard deviation of 17, while the 13 counts of the second researcher have a mean of 134.2 and a standard deviation of 15.1.

(a) Use a level 0.99 pooled variance confidence interval to compare the mean counts of the two researchers:

?≤μ1−μ2≤ ?

(b) Does the interval suggest that there is a difference in the mean counts of the two researchers?

Respuesta :

Answer:

a) The 99% confidence interval would be given by [tex]-15.277 \leq \mu_1 -\mu_2 \leq 27.277[/tex]

b) No, since the confidence interval contains the 0 we don't have enough evidence to conclude that we have significant differences between the two means.

Step-by-step explanation:

Previous concepts  

A confidence interval is "a range of values that’s likely to include a population value with a certain degree of confidence. It is often expressed a % whereby a population means lies between an upper and lower interval".  

The margin of error is the range of values below and above the sample statistic in a confidence interval.  

Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".  

[tex]\bar X_1 =140.2[/tex] represent the sample mean 1

[tex]\bar X_2 =134.2[/tex] represent the sample mean 2

n1=7 represent the sample 1 size  

n2=13 represent the sample 2 size  

[tex]s_1 =17[/tex] sample standard deviation for sample 1

[tex]s_2 =15.1[/tex] sample standard deviation for sample 2

[tex]\mu_1 -\mu_2[/tex] parameter of interest.

Confidence interval

The confidence interval for the difference of means is given by the following formula:  

[tex](\bar X_1 -\bar X_2) \pm t_{\alpha/2} S_p \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}[/tex] (1)  

And the pooled variance can be founded with the following formula:

[tex]s^2_p=\frac{(n_x -1)s_x^2 +(n_y-1)s_y^2}{n_x +n_y -2}[/tex]

[tex]s^2_p=\frac{(7 -1)17^2 +(13-1)15.1^2}{7 +13 -2}=248.34[/tex]

[tex]S_p =15.759[/tex] the pooled deviation

The point of estimate for [tex]\mu_1 -\mu_2[/tex] is just given by:

[tex]\bar X_1 -\bar X_2 =140.2-134.2=6[/tex]

In order to calculate the critical value [tex]t_{\alpha/2}[/tex] we need to find first the degrees of freedom, given by:  

[tex]df=n_1 +n_2 -1=7+13-2=18[/tex]  

Since the Confidence is 0.99 or 99%, the value of [tex]\alpha=0.01[/tex] and [tex]\alpha/2 =0.005[/tex], and we can use excel, a calculator or a table to find the critical value. The excel command would be: "=-T.INV(0.005,18)".And we see that [tex]t_{\alpha/2}=2.88[/tex]  

The standard error is given by the following formula:

[tex]SE=S_p \sqrt{\frac{1}{n_1}+\frac{1}{n_2}}[/tex]

And replacing we have:

[tex]SE=15.759\sqrt{\frac{1}{7}+\frac{1}{13}}=7.388[/tex]

Part a Confidence interval

Now we have everything in order to replace into formula (1):  

[tex]6-2.88(15.759)\sqrt{\frac{1}{7}+\frac{1}{13}}=-15.277[/tex]  

[tex]6+2.88(15.759)\sqrt{\frac{1}{7}+\frac{1}{13}}=27.277[/tex]  

So on this case the 99% confidence interval would be given by [tex]-15.277 \leq \mu_1 -\mu_2 \leq 27.277[/tex]  

Part b Does the interval suggest that there is a difference in the mean counts of the two researchers?

No, since the confidence interval contains the 0 we don't have enough evidence to conclude that we have significant differences between the two means.

ACCESS MORE