Respuesta :

Answer:

The complex number notation of  12-sqrt(-8) is 12 - 2.828i

Step-by-step explanation:

Given:

12-sqrt(-8)

To Find:

The  complex number notation of 12-sqrt(-8)

Solution:

12-sqrt(-8)  can be [tex]12-\sqrt{(8}[/tex]

where [tex]\sqrt{8}[/tex] can be written as

[tex]\sqrt {4 \cdot 2 \cdot -1}[/tex]

Now using the below radical rule which states that

[tex]\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}[/tex]

Then,

[tex]\sqrt {4 \cdot 2 \cdot (-1)}[/tex]

=> [tex]\sqrt {4} \cdot \sqrt {2} \cdot \sqrt { -1}[/tex]

=>  [tex]2 \cdot \sqrt {2} \cdot \sqrt {-1}[/tex]-----------------(1)

Also  we know that

[tex]\sqrt {-1}= i[/tex]---------------------(2)

substituting  (2) in (1)

we get

=>  [tex]2 \cdot \sqrt {2} \cdot i[/tex]

=>  [tex]2i \cdot \sqrt {2}[/tex]

=>  [tex]2i \cdot 1.414[/tex]

=> 2.828i

ACCESS MORE