Respuesta :
Answer:
9.692%
Step-by-step explanation:
We have been given that a manufacturing process produces a critical part of average length 120 millimeters, with a standard deviation of 3 millimeters. All parts deviating by more than 5 millimeters from the mean must be rejected.
5 millimeters below mean would be [tex]115[/tex] and 5 millimeters above mean would be [tex]125[/tex].
Corresponding z values for 115 and 125 would be:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
[tex]z=\frac{115-120}{3}[/tex]
[tex]z=\frac{-5}{3}[/tex]
[tex]z=-\frac{5}{3}[/tex]
[tex]z=\frac{125-120}{3}[/tex]
[tex]z=\frac{5}{3}[/tex]
Now, we need to find [tex]P(z<-\frac{5}{3})+P(z>\frac{5}{3})[/tex] using normal distribution table.
[tex]P(z<-\frac{5}{3})+P(z>\frac{5}{3})=P(z<-1.66)+P(z>1.66)[/tex]
We know that [tex]P(z>1.66)=1-P(z<1.66)[/tex].
[tex]P(z>1.66)=1-0.95154 [/tex]
[tex]P(z>1.66)=0.04846[/tex]
[tex]P(z<-\frac{5}{3})+P(z>\frac{5}{3})=0.04846+0.04846[/tex]
[tex]P(z<-\frac{5}{3})+P(z>\frac{5}{3})=0.09692[/tex]
Now, we need to convert 0.09692 into percentage as:
[tex]0.09692\times 100\%=9.692\%[/tex]
Therefore, 9.692% of parts must be rejected on average.
About 0% of the parts would be rejected, on average.
Z score
The z score is used to determine by how many standard deviations the raw score is above or below the mean. It is given by:
z = (x - μ) / σ
where μ is the mean, x = raw score and σ is the standard deviation.
Given μ = 120, σ = 3. For z > 5:
P(z > 5) = 1 - P(z < -38.3) = 1 - 1 = 1 = 0%
About 0% of the parts would be rejected, on average.
Find out more on Z score at: https://brainly.com/question/25638875