Respuesta :
Answer:
1. [tex]q=(\dfrac{45}{p})^{\frac{2}{3}}[/tex]
2. [tex]E_d=-\dfrac{2}{3}[/tex]
Step-by-step explanation:
The given demand equation is
[tex]p=\dfrac{45}{q^{1.5}}[/tex]
where p is the price (in dollars) per quarter-chicken serving and q is the number of quarter-chicken servings that can be sold per hour at this price.
Part 1 :
We need to Express q as a function of p.
The given equation can be rewritten as
[tex]q^{1.5}=\dfrac{45}{p}[/tex]
Using the properties of exponent, we get
[tex]q=(\dfrac{45}{p})^{\frac{1}{1.5}}[/tex] [tex][\because x^n=a\Rightarrow x=a^{\frac{1}{n}}][/tex]
[tex]q=(\dfrac{45}{p})^{\frac{2}{3}}[/tex]
Therefore, the required equation is [tex]q=(\dfrac{45}{p})^{\frac{2}{3}}[/tex].
Part 2 :
[tex]q=(45)^{\frac{2}{3}}p^{-\frac{2}{3}}[/tex]
Differentiate q with respect to p.
[tex]\dfrac{dq}{dp}=(45)^{\frac{2}{3}}(-\dfrac{2}{3})(p^{-\frac{2}{3}-1}})[/tex]
[tex]\dfrac{dq}{dp}=(45)^{\frac{2}{3}}(-\dfrac{2}{3})(p^{-\frac{5}{3}})[/tex]
[tex]\dfrac{dq}{dp}=(45)^{\frac{2}{3}}(-\dfrac{2}{3})(\dfrac{1}{p^{\frac{5}{3}}})[/tex]
Formula for price elasticity of demand is
[tex]E_d=\dfrac{dq}{dp}\times \dfrac{p}{q}[/tex]
[tex]E_d=(45)^{\frac{2}{3}}(-\dfrac{2}{3})(\dfrac{1}{p^{\frac{5}{3}}})\times \dfrac{p}{(45)^{\frac{2}{3}}p^{-\frac{2}{3}}}[/tex]
Cancel out common factors.
[tex]E_d=(-\dfrac{2}{3})(\dfrac{1}{p^{\frac{5}{3}}})\times \dfrac{p}{p^{-\frac{2}{3}}}[/tex]
Using the properties of exponents we get
[tex]E_d=-\dfrac{2}{3}(p^{-\frac{5}{3}+1-(-\frac{2}{3})})[/tex]
[tex]E_d=-\dfrac{2}{3}(p^{0})[/tex]
[tex]E_d=-\dfrac{2}{3}[/tex]
Therefore, the price elasticity of demand is -2/3.