Answer:
q = 1,297 10⁻¹⁹ C , n=1
Explanation:
For this problem we will use Newton's second law in the case of equilibrium
[tex]F_{e}[/tex] + B - W = 0
Where [tex]F_{e}[/tex] is the electrical force up, B the thrust and W the weight of the drop.
Let's look for weight and thrust
oil
ρ = m / V
m = ρ V
Air
B = [tex]\rho _{air}[/tex] g V
Electric force
[tex]F_{e}[/tex] = qE
E = V / d
[tex]F_{e}[/tex] = q V/d
Let's replace
q V / d + [tex]\rho _{air}[/tex] g V - ρ V g = 0
qV / d = (4/3 π r³) g (ρ –[tex]\rho _{air}[/tex])
q = 4/3 π r³ (ρ –[tex]\rho _{air}[/tex]) d / V
Reduce to SI units
d = 1.87 cm (1m / 100cm) = 1.87 10⁻² m
ρ= 0.816 r / cm3 (1kg / 1000g) (102cm / 1m)³ = 816 kg / m³
[tex]\rho_{air}[/tex] = 1.28 kg / m³
Let's calculate the charge
r = d / 2 = 3.3 10⁻⁶ m
r = 1.65 10⁻⁶ m
q = 4/3 π (1.65 10⁻⁶)³ (816 - 1.28) 0.0187 / 2210
q = 12.9717 10⁻²⁰ C
q = 1,297 10⁻¹⁹ C
If we assume that the load is
q = n e
In this case n = 1