Respuesta :
Answer:
The new molar concentration of CO at equilibrium will be :[CO]=1.16 M.
Explanation:
Equilibrium concentration of all reactant and product:
[tex][CO_2] = 0.24 M, [H_2] = 0.24 M, [H_2O] = 0.48 M, [CO] = 0.48 M[/tex]
Equilibrium constant of the reaction :
[tex]K=\frac{[H_2O][CO]}{[CO_2][H_2]}=\frac{0.48 M\times 0.48 M}{0.24 M\times 0.24 M}[/tex]
K = 4
[tex]CO_2(g) + H_2(g) \rightleftharpoons H_2O(g) + CO(g)[/tex]
Concentration at eq'm:
0.24 M 0.24 M 0.48 M 0.48 M
After addition of 0.34 moles per liter of [tex]CO_2[/tex] and [tex]H_2[/tex] are added.
(0.24+0.34) M (0.24+0.34) M (0.48+x)M (0.48+x)M
Equilibrium constant of the reaction after addition of more carbon dioxide and water:
[tex]K=4=\frac{(0.48+x)M\times (0.48+x)M}{(0.24+0.34)\times (0.24+0.34) M}[/tex]
[tex]4=\frac{(0.48+x)^2}{(0.24+0.34)^2}[/tex]
Solving for x: x = 0.68
The new molar concentration of CO at equilibrium will be:
[CO]= (0.48+x)M = (0.48+0.68 )M = 1.16 M
The molar concentration of CO is 1.16 M.
What is molar concentration?
Molar concentration is a measurement of a chemical species concentration in a solution in terms of the amount of substance per unit volume of solution.
The reaction is
[tex]\rm CO_2(g) + H_2(g) <-> H_2O(g) + CO(g)[/tex]
Equilibrium concentration of reactant and product is
[CO2] = 0.24 M, [H₂] = 0.24 M, [H2O] = 0.48 M, and [CO] = 0.48 M
[tex]K =\dfrac{[H_2O] [CO] }{[CO_2] [H_2] } \\\\\\K =\dfrac{[ 0.48] [0.48] }{[0.24] [0.24] } =4[/tex]
Adding 0.34 to [CO2] = 0.24 M, [H₂] = 0.24 M
(0.24+0.34) M (0.24+0.34) M
(0.48+x)M (0.48+x)M
Now the value of K
[tex]4 =\dfrac{ (0.48+x)M (0.48+x)M }{(0.24+0.34) M (0.24+0.34) M } \\x:x = 0.68[/tex]
The molar concentration of CO is
[CO] = (0.48+x)M = (0.48+0.68 )M = 1.16 M
Thus, the molar concentration is 1.16 M.
Learn more about molar concentration, here:
https://brainly.com/question/5986539