Respuesta :
Answer:
(a) [tex]2HgO_{(s)}\rightarrow 2Hg_{(l)}+O_2_{(g)}[/tex]
(b) 0.726 g
Explanation:
(a)
The balanced chemical equation is shown below as:-
[tex]2HgO_{(s)}\rightarrow 2Hg_{(l)}+O_2_{(g)}[/tex]
(b)
Given that:
Temperature = 90 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (90 + 273.15) K = 363.15 K
V = 50.0 mL = 0.05 L ( 1 mL = 0.001 L )
Pressure = 1 atm
Using ideal gas equation as:
[tex]PV=nRT[/tex]
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L atm/ K mol
Applying the equation as:
1 atm × 0.05 L = n ×0.0821 L atm/ K mol × 363.15 K
⇒n = 0.001677 mol
Thus, moles of [tex]O_2[/tex] = 0.001677 mol
According to the reaction shown above,
1 mole of [tex]O_2[/tex] is produced when 2 moles of mercury(II) oxide are reacted
0.001677 mole of [tex]O_2[/tex] is produced when [tex]2\times 0.001677[/tex] moles of mercury(II) oxide are reacted
Moles of mercury(II) oxide = 0.003354 moles
Molar mass of mercury(II) oxide = 216.59 g/mol
Mass of mercury(II) oxide = [tex]Moles\times Molar\ mass[/tex] = [tex]0.003354\times 216.59\ g=0.726\ g[/tex]
0.726 g is the mass of mercury(II) oxide that must have reacted.