Answer:
1) The value of c is given by
[tex]c=4[/tex]
2) The value of k is given by
[tex]k=-4150[/tex]
Step-by-step explanation:
Given that function g is defined by [tex]g(x)=cx-3[/tex] , where c is a constant.
To find c:
Also given that value of g(x) at x=0.5 is equal to -1
ie., [tex]g(0.5)=-1[/tex]
At x=0.5
[tex]g(0.5)=c(0.5)-3=-1[/tex]
[tex](0.5)c-3=-1[/tex]
[tex](0.5)c=-1+3[/tex]
[tex](0.5)c=2[/tex]
[tex]c=\frac{2}{0.5}[/tex]
[tex]c=\frac{2}{\tfrac{1}{2}}=2\times \frac{2}{1}[/tex]
Therefore [tex]c=4[/tex]
2) Given that function h is defined by [tex]h(x)=\frac{20x-k}{x+50}[/tex] , where k is a constant.
To find k:
Also given that value of h(x) at x=20 is equal to 65
ie., [tex]h(20)=65[/tex]
At x=20
[tex]h(20)=\frac{20(20)-k}{20+50}=65[/tex]
[tex]400-k=65(70)[/tex]
[tex]-k=4550-400[/tex]
[tex]-k=4150[/tex]
Therefore [tex]k=-4150[/tex]