Find the maximum value of P=3x+2y subject to the following constraints:
Please help!!!

Answer:
The maximum value of P is 18
Step-by-step explanation:
we have'the constraints
[tex]5x+y\leq 16[/tex] ---> constraint A
[tex]2x+3y\leq 22[/tex] ---> constraint B
[tex]x\geq 0[/tex] ---> constraint C
[tex]y\geq 0[/tex] ---> constraint D
using a graphing tool
The solution of the four constraints is the quadrilateral shaded area
The vertices of the quadrilateral area are
(0,0),(3.2,0),(2,6) and (0,7.33)
see the attached figure
To find out the maximum value of the objective function P, substitute the value of x and the value of y of each vertex in the objective function and then compare the results
so
For (0,0) ----> [tex]P=3(0)+2(0)=0[/tex]
For (3.2,0) ----> [tex]P=3(3.2)+2(0)=9.6[/tex]
For (2,6) ----> [tex]P=3(2)+2(6)=18[/tex]
For (0,7.33) ----> [tex]P=3(0)+2(7.33)=14.66[/tex]
therefore
The maximum value of P is 18