Answer:
Kr = 0.7618K
Explanation:
Suppose that the object's velocity is V, then his kinetic energy is:
K = [tex]\frac{mv^{2} }{2}[/tex]
K = [tex]\frac{(16)v^{2} }{2}[/tex]
K = 8[tex]v^{2}[/tex]
The rotational kinetic energy is
Kr = [tex]\frac{Iw^{2} }{2}[/tex]
where I: The moment of inertia
ω: angular velocity
Kr =[tex]\frac{(0.59)w^{2} }{2}[/tex]
Kr = 0.295[tex]w^{2}[/tex]
How the movement is without slipping, then
ω = [tex]\frac{v}{r}[/tex]
ω = [tex]\frac{v}{0.22}[/tex]
Thus
Kr = [tex]\frac{0.295v^{2} }{0.22^{2} }[/tex]
Kr = 6.095[tex]v^{2}[/tex]
8[tex]v^{2}[/tex] ----> 1
6.095[tex]v^{2}[/tex]----->?
Kr = 0.7618K