A spherical object (with non-uniform density) of mass 16 kg and radius 0.22 m rolls along a horizontal surface at a constant linear speed without slipping. The moment of inertia of the object about a diameter is 0.59 M R2 . The object’s rotational kinetic energy about its own center is what fraction of the object’s total kinetic energy

Respuesta :

Answer:

Kr = 0.7618K

Explanation:

Suppose that the object's velocity is V, then his kinetic energy is:

K = [tex]\frac{mv^{2} }{2}[/tex]

K = [tex]\frac{(16)v^{2} }{2}[/tex]

K = 8[tex]v^{2}[/tex]

The rotational kinetic energy is

Kr = [tex]\frac{Iw^{2} }{2}[/tex]

           where I: The moment of inertia

                      ω: angular velocity

Kr =[tex]\frac{(0.59)w^{2} }{2}[/tex]

Kr = 0.295[tex]w^{2}[/tex]

How the movement is without slipping, then  

ω = [tex]\frac{v}{r}[/tex]

ω = [tex]\frac{v}{0.22}[/tex]

Thus

Kr = [tex]\frac{0.295v^{2} }{0.22^{2} }[/tex]

Kr = 6.095[tex]v^{2}[/tex]

8[tex]v^{2}[/tex]  ---->  1

6.095[tex]v^{2}[/tex]----->?

Kr = 0.7618K

ACCESS MORE
EDU ACCESS