Respuesta :
Answer:
the work W required is 0.611 J
Explanation:
at the beginning, the distance d between the charges at coordinates (x₁=0.105 m,y₁=0) for charge 1 and (x₀=0,y₀=0) for charge 2 is:
d₁ = √[(x₁-x₀)² +(y₁-y₀)²] = √[(0.105 m-0)² +(0-0)²] = 0.105 m
when the charge 1 moves to the (x₂=0.290 m , y₂=0.245 m ), the new distance to charge 2 will be:
d₂ = √[(x₂-x₁)² +(y₂-y₁)²] = √[(0.290m-0)² +(0.245m-0)²] = 0.3796 m
knowing the initial distance and the final distance, we can now calculate the work W done by the electric field
W = k*q1*q2*(1/d₂-1/d₁)
where k= Coulomb's constant= 8.988×109 N⋅m²/C²
replacing values
W = k*q1*q2*(1/d₂-1/d₁)= (8.988*10⁹ N⋅m²/C²)*(2.10*10⁻⁶ C )*(-4.70*10⁻⁶ C)*[1/0.3796 m- 1/0.105 m ] = 0.611 N*m = 0.611 J
Answer:
0.613 J
Explanation:
charge q1 = 2.10 μC = [tex]2.1 x 10^{-6} C[/tex]
charge q2 = -4.70 μC = [tex]-4.7 x 10^{-6} C[/tex]
location of q1 = (0,0)
initial location of q2 = (0.105m , 0)
final location of q2 = (0.290m , 0.245m )
find the work done by the electric forces on the moving point charge
work done = kq1q2([tex]\frac{1}{R2} - \frac{1}{R1}[/tex])
where
- R1 = [tex]\sqrt{0.105^{2} + 0^{2} }[/tex] = 0.105
- R2 = [tex]\sqrt{0.290^{2} + 0.245^{2} }[/tex] = 0.38
- k = [tex]\frac{1}{4πE₀}[/tex] = [tex]9 x 10^{9} N.m^{2}/C^{2}[/tex]
work done = [tex] 9 x 10^{9} x 2.1 x 10^{-6} x -4.7 x 10^{-6} x (\frac{1}{0.38} - \frac{1}{0.105})[/tex]
work done = -88 x 10^{-3} x -6.9 = 0.613 J