Answer:
[tex]\lambda=656.34\times 10^{-9}\ m[/tex]
Explanation:
Using the Rydberg formula as:
[tex]\frac {1}{\lambda}=R_H\times (\frac {1}{n_{i}^2}-\frac {1}{n_{f}^2})[/tex]
where,
λ is wavelength of photon
R = Rydberg's constant (1.097 × 10⁷ m⁻¹)
n₁ is the initial final level and n₂ is the final energy level
Given that:-
[tex]n_f[/tex] = 3
[tex]n_i[/tex] = 2
Applying in the formula as:
[tex]\frac{1}{\lambda}=1.097\times 10^7\times (\frac{1}{2^2}-\frac{1}{3^2})[/tex]
[tex]\frac{1000}{\lambda}=10970000000\left(\frac{1}{4}-\frac{1}{9}\right)[/tex]
[tex]10970000000\left(\frac{1}{4}-\frac{1}{9}\right)\lambda=1000[/tex]
[tex]\lambda=\frac{9}{13712500}[/tex]
[tex]\lambda=656.34\times 10^{-9}\ m[/tex]
The wavelength of the line in the absorption line spectrum of hydrogen caused by the transition of the electron from an orbital with n=2 to an orbital with n=3 is:- [tex]656.34\times 10^{-9}\ m[/tex]