Answer:
Critical value: [tex]z= 2.575[/tex]
99% confidence interval: (0.695 cc/cubic meter, 0.713 cc/cubic meter).
Step-by-step explanation:
We have that to find our [tex]\alpha[/tex] level, that is the subtraction of 1 by the confidence interval divided by 2. So:
[tex]\alpha = \frac{1-0.99}{2} = 0.005[/tex]
Now, we have to find z in the Ztable as such z has a pvalue of [tex]1-\alpha[/tex].
So it is z with a pvalue of [tex]1-0.005 = 0.995[/tex], so [tex]z = 2.575[/tex] is the critical value
Now, find M as such
[tex]M = z*\frac{\sigma}{\sqrt{n}} = 2.575*\frac{0.0142}{\sqrt{17}} = 0.0089[/tex]
The lower end of the interval is the mean subtracted by M. So it is 0.704 - 0.0089 = 0.695 cc/cubic meter.
The upper end of the interval is the mean added to M. So it is 0.704 + 0.0089 = 0.713 cc/cubic meter.
So
99% confidence interval: (0.695 cc/cubic meter, 0.713 cc/cubic meter).