Answer:
21.67 rad/s²
208.36538 N
Explanation:
[tex]\omega_f[/tex] = Final angular velocity = [tex]\dfrac{1}{6}78=13\ rad/s[/tex]
[tex]\omega_i[/tex] = Initial angular velocity = 78 rad/s
[tex]\alpha[/tex] = Angular acceleration
[tex]\theta[/tex] = Angle of rotation
t = Time taken
r = Radius = 0.13
I = Moment of inertia = 1.25 kgm²
From equation of rotational motion
[tex]\omega_f=\omega_i+\alpha t\\\Rightarrow \alpha=\dfrac{\omega_f-\omega_i}{t}\\\Rightarrow \alpha=\dfrac{13-78}{3}\\\Rightarrow \alpha=-21.67\ rad/s^2[/tex]
The magnitude of the angular deceleration of the cylinder is 21.67 rad/s²
Torque is given by
[tex]\tau=I\alpha\\\Rightarrow \tau=1.25\times -21.67\\\Rightarrow \tau=-27.0875[/tex]
Frictional force is given by
[tex]F=\dfrac{\tau}{r}\\\Rightarrow F=\dfrac{-27.0875}{0.13}\\\Rightarrow F=-208.36538\ N[/tex]
The magnitude of the force of friction applied by the brake shoe is 208.36538 N