Respuesta :
Answer: The below calculations proves that the rate of diffusion of [tex]^{235}UF_6[/tex] is 0.4 % faster than the rate of diffusion of [tex]^{238}UF_6[/tex]
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows the equation:
[tex]\text{Rate of diffusion}\propto \frac{1}{\sqrt{\text{Molar mass of the gas}}}[/tex]
We are given:
Molar mass of [tex]^{235}UF_6=349.034348g/mol[/tex]
Molar mass of [tex]^{238}UF_6=352.041206g/mol[/tex]
By taking their ratio, we get:
[tex]\frac{Rate_{(^{235}UF_6)}}{Rate_{(^{238}UF_6)}}=\sqrt{\frac{M_{(^{238}UF_6)}}{M_{(^{235}UF_6)}}}[/tex]
[tex]\frac{Rate_{(^{235}UF_6)}}{Rate_{(^{238}UF_6)}}=\sqrt{\frac{352.041206}{349.034348}}\\\\\frac{Rate_{(^{235}UF_6)}}{Rate_{(^{238}UF_6)}}=\frac{1.00429816}{1}[/tex]
From the above relation, it is clear that rate of effusion of [tex]^{235}UF_6[/tex] is faster than [tex]^{238}UF_6[/tex]
Difference in the rate of both the gases, [tex]Rate_{(^{235}UF_6)}-Rate_{(^{238}UF_6)}=1.00429816-1=0.00429816[/tex]
To calculate the percentage increase in the rate, we use the equation:
[tex]\%\text{ increase}=\frac{\Delta R}{Rate_{(^{235}UF_6)}}\times 100[/tex]
Putting values in above equation, we get:
[tex]\%\text{ increase}=\frac{0.00429816}{1.00429816}\times 100\\\\\%\text{ increase}=0.4\%[/tex]
The above calculations proves that the rate of diffusion of [tex]^{235}UF_6[/tex] is 0.4 % faster than the rate of diffusion of [tex]^{238}UF_6[/tex]