Answer: The maximum error = $105.76.
Step-by-step explanation:
Formula to find the maximum error:
[tex]E= z^*\dfrac{\sigma}{\sqrt{n}}[/tex]
, where n= sample size.
[tex]\sigma[/tex] = Population standard deviation
z*= Critical value(two-tailed).
As per given , we have
[tex]\overline{x}=1438[/tex]
n= 35
[tex]\sigma=269[/tex]
For 98% confidence , the significance level = [tex]1-0.98=0.02[/tex]
By z-table , the critical value (two -tailed) =[tex]z^* = z_{\alpha/2}=z_{0.01}=2.326[/tex]
Now , the maximum error = [tex]E= (2.326)\dfrac{269}{\sqrt{35}}[/tex]
[tex]E= (2.326)\dfrac{269}{5.9160797831}[/tex]
[tex]E= (2.326)\times45.4692989044=105.761589252\pprox105.76[/tex]
Hence, With 98% confidence level , the maximum error = $105.76.