Respuesta :
Answer:
a) I = 0.363 kg*[tex]m^{2}[/tex]
b) [tex]I_{T}[/tex] = 0.82385 kg*[tex]m^{2}[/tex]
Explanation:
a) If we approximate the skater how a cylinder his moment of inertia is:
I = [tex]\frac{mr^{2} }{2}[/tex]
I = [tex]\frac{(60)(0.110)^{2} }{2}[/tex]
I = 0.363 kg*[tex]m^{2}[/tex]
b) If the skater has his arms extended then:
[tex]I_{T} = I_{B} + I_{A}[/tex]
where [tex]I_{B}[/tex]: Body’s moment of inertia
[tex]I_{A}[/tex]: Moment of inertia of the arms
[tex]I_{B}[/tex] = [tex]\frac{mr^{2} }{2}[/tex]
[tex]I_{B}[/tex] = [tex]\frac{(52.5)(0.110)^{2} }{2}[/tex] = 0.3176 kg*[tex]m^{2}[/tex]
[tex]I_{A}[/tex] = 2 * [tex]\frac{mL^{2} }{12}[/tex]
[tex]I_{A}[/tex] = 2 * [tex]\frac{(3.75)(0.9)^{2} }{12}[/tex] = 0.50625 kg*[tex]m^{2}[/tex]
[tex]I_{T}[/tex] = 0.3176 + 0.50625 = 0.82385 kg*[tex]m^{2}[/tex]
(a) The moment of inertia of the skater at the given radius is 0.363 kgm².
(b) The moment of inertia of the skater when he externs his arm is 0.824 kgm².
Moment of inertia of the skater
The moment of inertia of the skater at the given radius is calculated as follows;
I = ¹/₂MR²
I = 0.5 x 60 x (0.11)²
I = 0.363 kgm²
Moment of inertia when the skater extends his arm
The moment of inertia of the skater when he externs his arm is calculated as follows;
I₁ = ¹/₂MR²
I₁ = 0.5 x 52.5 x (0.11)²
I₁ = 0.318 kgm²
Moment of inertia of the long arms about the end is calculated as follows;
I₂ = 2(¹/₁₂ML²)
I₂ = ¹/₆ML²
I₂ = ¹/₆ x 3.75 x (0.9)²
I₂ = 0.506 kgm²
Total moment of inertia = I₁ + I₂ = 0.318 kgm² + 0.506 kgm² = 0.824 kgm².
Learn more about moment of inertia here: https://brainly.com/question/3406242