Answer:
[tex]\omega_{f}=0.429\ rev/s[/tex]
Explanation:
given,
radius of merry - go - round = 3.03 m
mass of the disk = 125 kg
speed of the merry- go-round = 0.661 rev/s
speed = 3.51 m/s
mass of person =59.4 kg
[tex]I_{disk} = \dfrac{1}{2}MR^2[/tex]
[tex]I_{disk} = \dfrac{1}{2}\times 125 \times 3.03^2[/tex]
[tex]I_{disk} = 573.81 kg.m^2[/tex]
initial angular momentum of the system
[tex]L_i = I\omega_i + mvR[/tex]
[tex]L_i =573.81\times 0.661 \times 2\pi + 59.4 \times 3.51 \times 3.03[/tex]
[tex]L_i =3014.86\ kg.m^2/s[/tex]
final angular momentum of the system
[tex]L_f = (I_{disk}+mR^2)\omega_{f}[/tex]
[tex]L_f = (573.81 + 59.4\times 3.03^2)\omega_{f}[/tex]
[tex]L_f= (1119.16)\omega_{f}[/tex]
from conservation of angular momentum
[tex]L_i = L_f[/tex]
[tex]3014.86 = (1119.16)\omega_{f}[/tex]
[tex]\omega_{f}=2.694 \times \dfrac{1}{2\pi}[/tex]
[tex]\omega_{f}=0.429\ rev/s[/tex]