Respuesta :

Answer:

length of BA=[tex]\sqrt{(3+2)^{2}+(0-3)^{2}}[/tex]

length of BC=[tex]\sqrt{(3+4)^{2}+(0+3)^{2}}[/tex]

length of AC=[tex]\sqrt{(-2+4)^{2}+(3+3)^{2}}[/tex]

AB=BA=6.7

BC=7.6

AC=CA=6.3

PERIMETER=AB+BC+CA=19.8

Step-by-step explanation:

we can use length of line formula if the line cordinate is (a,b) and (c,d)

[tex]\sqrt{(c-a)^{2}+(d-b^{2})}[/tex]

ACCESS MORE