Answer:
a) [tex]V_s=4989.7895\ in^3[/tex]
b) [tex]mass=0.1803\ lb[/tex]
c) [tex]V_i=39.93\ gallons[/tex]
Explanation:
Therefore,
a)
External volume of the structure:
[tex]V=B.H.W[/tex]
[tex]V=84\times47\times59\div 2.54^3[/tex]
[tex]V=14214.3828\ in^3[/tex]
Internal volume of the structure:
[tex]V_i=B_i.H_i.W_i[/tex]
[tex]V_i=76\times 39\times 51\div 2.54^3[/tex]
[tex]V_i=9224.5932\ in^3[/tex]
∴Volume of Styrofoam used:
[tex]V_s=V-V_i[/tex]
[tex]V_s=14214.3828-9224.5932[/tex]
[tex]V_s=4989.7895\ in^3[/tex]
b)
given that density of Styrofoam, [tex]\rho=1\ kg.m^{-3}=3.613\times 10^{-5}\ lb.in^{-3}[/tex]
we know,
[tex]\rm mass= density \times volume[/tex]
[tex]mass=4989.7895\times 3.613\times 10^{-5}[/tex]
[tex]mass=0.1803\ lb[/tex]
c)
Volume of liquid it can hold [tex]=V_i[/tex]
[tex]V_i=39.93\ gallons[/tex]