Respuesta :

Answer:

[tex]\frac{605}{6}\pi \ cm^2[/tex]  or [tex]316.62\ cm^2[/tex]

Step-by-step explanation:

step 1

Find the area of complete circle

The area of the circle is equal to

[tex]A=\pi r^{2}[/tex]

we have

[tex]r=11\ cm[/tex]

substitute

[tex]A=\pi (11)^{2}[/tex]

[tex]A=121\pi\ cm^2[/tex]

step 2

Find the area of the sector

Remember that the area of the complete circle subtends a central angle of 360 degrees

so

using proportion

Find out the area of the region by a central angle of 300 degrees

[tex]\frac{121\pi}{360^o}=\frac{x}{300^o}\\\\x=121\pi (\frac{300^o}{360^o})\\\\x=\frac{36,300}{360}\pi\ cm^2[/tex]

simplify

[tex]x=\frac{605}{6}\pi \ cm^2[/tex] ----> exact value

Find the approximate value

assume

[tex]\pi =3.14[/tex]

[tex]x=\frac{605}{6}(3.14)=316.62\ cm^2[/tex]

ACCESS MORE