Respuesta :

The question is incomplete and the figure is missing. Here is the complete question with the figure attached below.

In the figure, sin ∠MQP = ______.

A. Cos N and Sin R

B. Sin R and Sin N

C. Cos N and Sin M

D. Cos R and Sin N

Answer:

D. Cos R and Sin N

Step-by-step explanation:

Given:

∠MQP = 56°

sin (∠MQP) = sin (56°)

Consider the triangle NMR,

m ∠N = 56°, m ∠R = 34°

sin (∠N) = sin (56°)

So, sin (∠MQP) = sin (∠N) = sin (56°) ---------- (1)

Now, we know that, [tex]\sin x=\cos(90-x)[/tex]

Therefore, sin (∠N) = sin (56°) = cos (90°-56°) = cos (34°)

Now, from the same triangle NMR,

[tex]\cos (\angle R)=\cos (34\°)[/tex]

Therefore, sin (∠N) = cos (∠R)  ------------- (2)

Hence, from equations (1) and (2), we have

sin (∠MQP) = sin (∠N) = cos (∠R)

So, option D is correct.

Ver imagen DarcySea
ACCESS MORE