Answer:
The amount invested at 4% was $3,000 and the amount invested at 7% was $8,000
Step-by-step explanation:
we know that
The simple interest formula is equal to
[tex]I=P(rt)[/tex]
where
I is the Final Interest Value
P is the Principal amount of money to be invested
r is the rate of interest
t is Number of Time Periods
in this problem we have
[tex]t=1\ year\\ P_1=x\\P_2=11,000-x\\I=\$680\\r_1=4\%=4/100=0.04\\r_2=7\%=7/100=0.07[/tex]
substitute in the formula above
[tex]I=P_1(r_1t)+P_2(r_2t)[/tex]
[tex]680=0.04x+(11,000-x)0.07[/tex]
solve for x
[tex]680=0.04x+770-0.07x[/tex]
[tex]0.07x-0.04x=770-680[/tex]
[tex]0.03x=90[/tex]
[tex]x=\$3,000[/tex]
so
[tex]\$11,000-x=\$11,000-\$3,000=\$8,000[/tex]
therefore
The amount invested at 4% was $3,000 and the amount invested at 7% was $8,000