Respuesta :

Answer:

[tex]\frac{8}{5} x^{2}  - \frac{16}{5} xy + 4x[/tex]

[tex]xy^{2} + \frac{2}{3}y - 8y^{2}z[/tex]

Step-by-step explanation:

We have to simplify the followings:  

1) [tex]- \frac{4}{5}x (- 2x + 4y - 5)[/tex]

= [tex]- \frac{4}{5}x \times (- 2x) +  - \frac{4}{5}x \times (4y) + - \frac{4}{5}x \times (- 5)[/tex]  

{By distributive property of multiplication}

= [tex]\frac{8}{5} x^{2}  - \frac{16}{5} xy + 4x[/tex] (Answer)

2) [tex]2y^{2}( \frac{1}{2} x + \frac{2}{6}y - 4z)[/tex]

= [tex]2y^{2} \times (\frac{1}{2} x) + 2y^{2} \times ( \frac{2}{6}y) - 2y^{2} \times (4z)[/tex]

{By distributive property of multiplication}

= [tex]xy^{2} + \frac{2}{3}y - 8y^{2}z[/tex] (Answer)

ACCESS MORE