Answer:
13.7m
Explanation:
Since there's no external force acting on the astronaut or the satellite, the momentum must be conserved before and after the push. Since both are at rest before, momentum is 0.
After the push
[tex]m_av_a + m_sv_s = 0[/tex]
Where [tex]m_a = 92kg[/tex] is the mass of the astronaut, [tex]m_s = 1200kg[/tex] is the mass of the satellite, [tex]v_s = 0.14 m/s[/tex] is the speed of the satellite. We can calculate the speed [tex]v_a[/tex] of the astronaut:
[tex]v_a = \frac{-m_sv_s}{m_a} = \frac{-1200*0.14}{92} = -1.83 m/s[/tex]
So the astronaut has a opposite direction with the satellite motion, which is further away from the shuttle. Since it takes 7.5 s for the astronaut to make contact with the shuttle, the distance would be
d = vt = 1.83 * 7.5 = 13.7 m