Answer:
12 cm
Explanation:
[tex]P_1[/tex] = Initial pressure = [tex]P_a=1\times 10^5\ Pa[/tex]
[tex]P_2[/tex] = Final pressure = [tex]P_a+\rho_w gh[/tex]
h = Depth of cylinder = 36 cm
g = Acceleration due to gravity = 10 m/s²
[tex]\rho_w[/tex] = Density of water = 1000 kg/m³
[tex]h_1[/tex] = Depth of lake = 20 m
From the ideal gas relation we have
[tex]P_1V_1=P_2V_2\\\Rightarrow P_a(\pi r^2h)=(P_a+\rho_w gh_1)\pi r^2h'\\\Rightarrow 1\times 10^5\times 36=(1\times 10^5+1000\times 10\times 20)h'\\\Rightarrow h'=\dfrac{1\times 10^5\times 36}{1\times 10^5+1000\times 10\times 20}\\\Rightarrow h'=12\ cm[/tex]
The height of the cylinder of air in the bucket when the bucket is at the given depth is 12 cm