Respuesta :
Answer:
The solutions of the original equation are x=-5 and x=-2
Step-by-step explanation:
we have
[tex](x+3)^2+(x+3)-2=0[/tex]
Let
[tex]u=(x+3)[/tex]
Rewrite the equation
[tex](u)^2+(u)-2=0[/tex]
Complete the square
[tex]u^2+u=2[/tex]
[tex]u^2+u+1/4=2+1/4[/tex]
[tex]u^2+u+1/4=9/4[/tex]
rewrite as perfect squares
[tex](u+1/2)^2=9/4[/tex]
square root both sides
[tex](u+1/2)=\pm\frac{3}{2}[/tex]
[tex]u=(-1/2)\pm\frac{3}{2}[/tex]
[tex]u=(-1/2)+\frac{3}{2}=1[/tex]
[tex]u=(-1/2)-\frac{3}{2}=-2[/tex]
the solutions are
u=-2,u=1
Alternative Method
The formula to solve a quadratic equation of the form
[tex]ax^{2} +bx+c=0[/tex]
is equal to
[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex](u)^2+(u)-2=0[/tex]
so
[tex]a=1\\b=1\\c=-2[/tex]
substitute in the formula
[tex]u=\frac{-1\pm\sqrt{1^{2}-4(1)(-2)}} {2(1)}[/tex]
[tex]u=\frac{-1\pm\sqrt{9}} {2}[/tex]
[tex]u=\frac{-1\pm3} {2}[/tex]
[tex]u=\frac{-1+3} {2}=1[/tex]
[tex]u=\frac{-1-3} {2}=-2[/tex]
the solutions are
u=-2,u=1
Find the solutions of the original equation
For u=-2
[tex]-2=(x+3)[/tex] ----> [tex]x=-2-3=-5[/tex]
For u=1
[tex]1=(x+3)[/tex] ----> [tex]x=1-3=-2[/tex]
therefore
The solutions of the original equation are
x=-5 and x=-2
Answer:
Part 1 is x + 3
Part 2 is B u2 + u - 2 + 0
Part 3 is (u + 2)(u - 1) = 0
Part 4 is x = -5 or x = -2
Step-by-step explanation:
on edg... Good Luck!!!