Answer:
4 trays should he prepared, if the owner wants a service level of at least 95%.
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = 5
Standard Deviation, σ = 1
We are given that the distribution of demand score is a bell shaped distribution that is a normal distribution.
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
P(X > x) = 0.95
We have to find the value of x such that the probability is 0.95
P(X > x)
[tex]P( X > x) = P( z > \displaystyle\frac{x - 5}{1})=0.95[/tex]
[tex]= 1 -P( z \leq \displaystyle\frac{x - 5}{1})=0.95 [/tex]
[tex]=P( z \leq \displaystyle\frac{x - 5}{1})=0.05 [/tex]
Calculation the value from standard normal z table, we have,
[tex]\displaystyle\frac{x - 5}{1} = -1.645\\x = 3.355 \approx 4[/tex]
Hence, 4 trays should he prepared, if the owner wants a service level of at least 95%.