Given that [tex]\Delta H^o_f[/tex] [Br(g)] = 111.9 kJ ⋅ mol⁻¹[tex]\Delta H^o_f[/tex] [Br(g)] = 111.9 kJ⋅mol⁻¹[tex]\Delta H^o_f[/tex] [C(g)] = 716.7 kJ ⋅ mol⁻¹[tex]\Delta H^o_f[/tex] [C(g)] = 716.7 kJ⋅mol⁻¹[tex]\Delta H^o_f[/tex] [CBr₄(g)] = 29.4 kJ ⋅ mol⁻¹[tex]\Delta H^o_f[/tex] [CBr₄(g)] = 29.4 kJ⋅mol⁻¹ Calculate the average molar bond enthalpy of the carbon–bromine bond in a CBr₄ molecule.

Respuesta :

Answer : The average molar bond enthalpy of the carbon–bromine bond in a CBr₄ molecule is -283.72 kJ

Explanation :

Enthalpy change : It is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as [tex]\Delta H^o[/tex]

The equation used to calculate enthalpy change is of a reaction is:  

[tex]\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)][/tex]

The equilibrium reaction follows:

[tex]C(g)+4Br(g)\rightleftharpoons CBr_4(g)[/tex]

The equation for the enthalpy change of the above reaction is:

[tex]\Delta H^o_{rxn}=[(n_{(CBr_4)}\times \Delta H^o_f_{(CBr_4)})]-[(n_{(Br)}\times \Delta H^o_f_{(Br)})+(n_{(C)}\times \Delta H^o_f_{(C)})][/tex]

We are given:

[tex]\Delta H^o_f_{(CBr_4(g))}=29.4kJ/mol\\\Delta H^o_f_{(C(g))}=716.7kJ/mol\\\Delta H^o_f_{(Br(s))}=111.9kJ/mol[/tex]

Putting values in above equation, we get:

[tex]\Delta H^o_{rxn}=[(1\times 29.4)]-[(4\times 111.9)+(1\times 716.7)]=-1134.9kJ/mol[/tex]

Now we have to calculate the average molar bond enthalpy of the carbon–bromine bond in a CBr₄ molecule.

The enthalpy change of reaction = E(bonds broken) - E(bonds formed)

The enthalpy change of reaction = - E(bonds formed)

[tex]\Delta H=-[4\times B.E_{C-Br}][/tex]

Now put all the given values in the above expression, we get:

[tex]-1134.9=-[4\times B.E_{C-Br}][/tex]

[tex]B.E_{C-Br}=-283.72kJ[/tex]

Therefore, the average molar bond enthalpy of the carbon–bromine bond in a CBr₄ molecule is -283.72 kJ

ACCESS MORE