Answer : The average molar bond enthalpy of the carbon–bromine bond in a CBr₄ molecule is -283.72 kJ
Explanation :
Enthalpy change : It is defined as the difference in enthalpies of all the product and the reactants each multiplied with their respective number of moles. It is represented as [tex]\Delta H^o[/tex]
The equation used to calculate enthalpy change is of a reaction is:
[tex]\Delta H^o_{rxn}=\sum [n\times \Delta H^o_f(product)]-\sum [n\times \Delta H^o_f(reactant)][/tex]
The equilibrium reaction follows:
[tex]C(g)+4Br(g)\rightleftharpoons CBr_4(g)[/tex]
The equation for the enthalpy change of the above reaction is:
[tex]\Delta H^o_{rxn}=[(n_{(CBr_4)}\times \Delta H^o_f_{(CBr_4)})]-[(n_{(Br)}\times \Delta H^o_f_{(Br)})+(n_{(C)}\times \Delta H^o_f_{(C)})][/tex]
We are given:
[tex]\Delta H^o_f_{(CBr_4(g))}=29.4kJ/mol\\\Delta H^o_f_{(C(g))}=716.7kJ/mol\\\Delta H^o_f_{(Br(s))}=111.9kJ/mol[/tex]
Putting values in above equation, we get:
[tex]\Delta H^o_{rxn}=[(1\times 29.4)]-[(4\times 111.9)+(1\times 716.7)]=-1134.9kJ/mol[/tex]
Now we have to calculate the average molar bond enthalpy of the carbon–bromine bond in a CBr₄ molecule.
The enthalpy change of reaction = E(bonds broken) - E(bonds formed)
The enthalpy change of reaction = - E(bonds formed)
[tex]\Delta H=-[4\times B.E_{C-Br}][/tex]
Now put all the given values in the above expression, we get:
[tex]-1134.9=-[4\times B.E_{C-Br}][/tex]
[tex]B.E_{C-Br}=-283.72kJ[/tex]
Therefore, the average molar bond enthalpy of the carbon–bromine bond in a CBr₄ molecule is -283.72 kJ