Respuesta :
Answer:
99% CI:
[tex]-4.637\leq\mu_v-\mu_o\leq 3.737[/tex]
Step-by-step explanation:
We have to calculate a 99%CI for the difference of means for the vegan and the omnivore.
First, we have to estimate the standard deviation
[tex]s_{Md}=\sqrt{\frac{2MSE}{n_h}}[/tex]
The MSE can be calculated as
[tex]MSE=\frac{(SSE_1+SSE_2)}{df} =\frac{(n_1s_1)^2+(n_2*s_2)^2}{n_1+n_2-2}\\\\MSE=\frac{(85*1.05)^2+(96*1.20)^2}{85+96-2}=\frac{7965.56+13272.04}{179} =118.65[/tex]
The weighted sample size nh can be calculated as
[tex]n_h=\frac{2}{1/n_1+1/n_2}=\frac{2}{1/85+1/96}=\frac{2}{0.0222} =90.16[/tex]
The standard deviation then becomes
[tex]s_{Md}=\sqrt{\frac{2MSE}{n_h}}=\sqrt{\frac{2*118.65}{90.16}}=\sqrt{2.632} =1.623[/tex]
The z-value for a 99% confidence interval is z=2.58.
The difference between means is
[tex]\Delta M=M_v-M_o=5.10-5.55=-0.45[/tex]
Then the confidence interval can be constructed as
[tex]\Delta M-z*s_{Md}\leq\mu_v-\mu_o\leq \Delta M+z*s_{Md}\\\\ -0.45-2.58*1.623\leq\mu_v-\mu_o\leq -0.450+2.58*1.623\\\\-0.450-4.187\leq\mu_v-\mu_o\leq-0.450+4.187\\\\-4.637\leq\mu_v-\mu_o\leq 3.737[/tex]